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EQUIVALENT CONSTRAINTS FOR DISCRETE SETS
R. R. Meyer
3 1. Introduction
Gould Td Rubin [6] developed a procedure for perturbing the (real)
data of a system of linear constraints on a finite set of rational n-vectors
so as to obtain an equivalent set of constraints with rational data (see Theorem
1 below). The purpose of Section 2 of this paper is to describe how a related

by result of Meyer and Wage [11] for the unbounded case may be used in an alterna-

tive and somewhat simpler derivation of the results of Gould and Rubin. The

approach used in Section 2 is then generalized in Sections 3-5 to extend certain
ideas of Bradley [1] and others for collapsing systems of equations into ""equiv-

alent" single equations.

2. ''Rationalizing'' Linear Equations

The following result is the main theorem of Gould and Rubin [6 ]:

Theorem 2.1: Let

Ep = {x| Ax <b, Dx =€, Xe X*} 3
where the matrices and vectors A, b, D, and e are comprised of reals, and
X* is a non-empty, finite subset of Qn, the set of rational n-vectors.
Then there exist rational matrices and vectors 1/-\\, B, ]3, e (which may be |

chosen arbitrarily close to A,b,D,e respectively) such that

w

vl
1
e
1]

{xlﬁxsfubx:g, X e X*}

N e e T )

To establish this result, the inequality constraints may be dealt with by per-

turbing the data in a fairly straightforward manner, but the equations require

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024
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rather more delicate considerations. To deal with the equations, Gould and
Rubin established the following Lemma:

n ~ 1 ) a n ~
Lemma 2.2: Let re R, ryje Q, and define Q(r) = {x| xe¢ Q ,rx = ro} :
Then there exist rational vectors r which may be chosen arbitrarily close to

r such that Q(r) C {x| xe Q", Tx =T } = Q(r.

Given this Lemma, by selecting an T close enough to r so that no
element of X*\Q(r) can satisfy Tx = fo, the relation Q(r) N X* = Q(‘;) n X*
is established, and the main theorem may be proved by considering the equa-
tions and inequalities one at a time.

Gould and Rubin proved Lemma 2. 2 by extracting a maximal set of
linearly independent vectors of Q(r) and considering certain algebraic trans-
formations involving the inverse of a submatrix of that maximal set of columns.
The procedure to be described below does not require any matrix operations
and works directly with the data (r,?o) rather than the vectors of Q(r). The method
essentially consists of re-writing the equation rx = ;0 in such a way that

Lemma 2.2 may be proved by selecting rationals sufficiently close to the ir-

rationals in the re-formulated version of rx = ;0 . (Gould and Rubin note that

the result of Lemma 2.2 cannot be obtained by simply choosing r close to g
so the nature of the re-formulation of the equation is critical to the proof. )
Lemma 2.2 is trivially true if Q(r) = ¢, so we shall assume r#0 and Q(r)# ¢.
The ''critical' constants are identified by determining a minimal
cardinality index set I such that each rj may be expressed as a rational
combination of r, with ie I (the ri with ie¢ I may be thought of as a basis

i

over the rational field for the elements of r). Such an index set I corresponds




to the rationally independent elements (i.e., no non-trivial rational combination

is 0) of r, and may be derived by the usual procedure for extracting a linearly inde-
pendent set. Once this is done, the equation rx = r. is written as

0
n
( a, ,r)x, =T
jz=:l iZe"'I Li 43 o

n
where the «, ., are rational, and then as Z r, ( Z a, .X)=r,. Since
; 1,] e R .
i we are assuming that Q(r) # ¢, there exists rationals x. such that
1 j ?
n j
e e B ;
¥ ey tam
' 4 and, for notational convenience, we define the rationals
! n
.‘. ﬁ]‘. = Z_ ai,jxj (161).
j=1
? » (Note that this approach does not require that ?O be rational.) Then, as
E : shown in [1ll], each element of Q(r) must satisfy the system of equations
n
P L X, =
(2.1) o) @ % =By (ie 1),
j=1
( mote that every rational solution of this system also is in Q(r), so that the

system (2.1) provides a rationalization of Q(r) that is valid in the unbounded

case) so that for arbitrary constants ri p

n
(2.2) QD € {x|xe Q% )t () o 5= T B
3 iel =l 7’ iel

Since the ri may be chosen as rationals arbitrarily close to the ri, the

] : relation (2. 2) yields Lemma 2.2. (Note also that if the r; are chosen as the

3 elements of any rationally independent set, then the subset relation in (2. 2) ]

may be replaced by an equation. This result will be generalized in Section 3.)

o g

Example 2.1 : Consider the equation

J'z'xl+(1-ﬁ)x2=1,

)

.
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and re-write it as
»J?xl+(l -~/7)x2 = NZ+( -N2Z).
From the latter formulation and the rational independence of N2 and 1 -2,

it follows that any rational solution of the equation must satisfy xl =l x =1, |

i.e., the equation has a unique solution over the rationals. Thus, for any

constants ?1 and ?2 , the vector (l,l)T will be contained in the solution set

of

A A pal Fal
rlxl + I'ZXZ = !‘1+!'2.

It might be noted that for this example the rationalization procedure of Gould
and Rubin would yield

(NZ + e:)xl + (l-ﬁ-e)x2=l,
where € is chosen so that the coefficients are rational. This example
iilustrates that the procedure described in this paper mayresult in a modified
RHS if r is comprised entirely of irrationals, whereas the rationalization
procedure in [6 ] will leave the RHS unchanged, but will require as a con- &

sequence that the perturbation of the coefficients be of a more restricted form. =
Examglezz-ix+lx * NZx, ¢ NBx, ==
= 3l 5 2 3 4 " 2°
The rationalization procedure described above yields the equation:
P 1

1 1 ~
T i S G B o T R
where ?3 and r 4 are arbitrary rationals. The rationalization procedure of

Gould and Rubin yields the same result, but requires somewhat more algebraic

manipulation to arrive at that result. This example illustrates that, in the

case in which r contains at least one non-zero rational and only rationally

independent irrationals, the rationalization procedure can be accomplished by

wifw
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simply replacing the irrationals by arbitrary rationals. [

Note that while the system of equations (2.1) is equivalent to the single
equation rx = ?0 over the rationals, i.e., Q(r) = {x|xe C)n ; Z a j xj =
=1~
pi (ie I)}, in general there does not exist a single equation with rational

coefficients whose solution set over all the rationals will be Q(r). For

A

example, if T # 0 and T is irrational for some index k , then for any

~

rational vector r with rk

vector, but Q(r) does not. On the other hand, the approach used above indi-

# 0, Q(r) contains a multiple of the kth unit

cates how the system (2.1) may be '"collapsed' into a single equation having
the same intersection with some finite set. In the next section we will indicate

how the constraint combination approach can be generalized in a number of

interesting ways.

3. !"Collapsing'' Systems of Equations into Single Equations

In this section we will consider conditions on functions fl and fz

real-valued on a set X such that the set defined by

E

{x|xe X, fl(x) = 0, fz(x) =0}
coincides with the set

Ele) = {x|xe¢ X, fl(x) + (14 e)fz(x) =0}
for certain values of the parameter ¢ . Using this approach, a system of m
equations may be ''collapsed' into a single equation by combining two equa-
tions at a time. While the technique used in Section 2 took advantage of
the linearity of the functions involved and the finiteness of the set X*, these
restrictions can be relaxed in various ways, and the results to be obtained also

generalize some of the results of Bradley [l ]. The approach also differs

- B
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from Bradley's, in that it is based on the perturbation ideas of the previous
section rather than the number theoretic properties used in [1].
In order to identify values for & such that E = E(e), it is convenient

to define a '"prohibited' set

fl(x) + fz(x)

= = ———————— !
P ={vlv= e for some xe X'},

where X' = {x|xe X, f,(x) # 0}. (Note that P is determined by f,f,, and X.)

The motivation for this definition is the following Lemma:

Lemma 3.1: E = E(e) if and only if ¢ } P.
Proof: Clearly E C E(e) for all £, so we need only show E(g¢) C E. If
e} P and x ¢ E(e), then fz(i) =0 implies fl(i) = 0 , so suppose fz(i) #0.
Then ¢ = (fl(i) + fz(i))/(-fz(;c)) and xe X' contradict e { P. Conversely,
if € ¢ P, there exists an xe¢ X' such that ¢ = (fl(;c) + fz(i))/(-fz(i)), so
that xe¢ E(e) but x¢ E. "

The Lemma implies that a valid combination of the constraints exists
if P# Rl, so the results below are based on specifying conditions on fl’fz’
and X that yield identifiable '"gaps'' in P. Qualitatively, three types of
results will be considered: (1) P C Ql, (2) P is finite, and (3) P contains
a gap near 0,

Our first result deals with the case in which P C Ql and generalizes
the results of Section 2.
Theorem 3.2 If, for i =1 and 2, fi(x) is rational for xe¢ X, then E = E(¢)
for all irrational & . More generally, if fl, g ’fm are rational -valued on

X and €(s--.€, are rationally independent, then

b

P o




{x|xe X, fl(x) =0, ..., f (x)=0} =

{x|%e X, 81f1(x) Bt emfm(x) =
Proof: Follows directly from the definition of rational independence. [ ]

Since the ei may be chosen arbitrarily close to | , note that Theorem
3.2 says that there exist equivalent formulations whose single equation is
arbitrarily '"'close' to the sum of the original equations. Note, however, that
simply summing the equations will, in general, not lead to an equivalent
formulation.

Finiteness of P can be guaranteed by assuming that X is a finite
set or that f1 and f2 take on only finitely many different values over X.
When P is finite, Lemma 3.1 shows that ""weighting'' and adding two con-
straints leaves the feasible set unchanged except for a finite number of
""prohibited' values of & . While P itself may oe difficult to compute,
gaps in P may be easier to identify.
Theorem 3.3: For 1=1,2, let fi: X - Yi’ where Yi is a finite subset of
R for each i. Then there exist positive constants M and M such that if
le| ¢« (0,M) or |e|>M, then E = E(e) .
Proof: The result follows immediately from the finiteness of P . .

In particular, Theorem 3.3 will hold if X is any finite set. Ruling
out the trivial cases in which fl(x) + fz(x) =0 forall xe X (in this case
any & # 0 may be used, and in particular E = E(-l) = {XlXe X, fl(x) =0} =
{X'Xe X, fz(x) =0}) or fz(x) =0 forall xe X (in this case any & may be
used, and in particular E = E(-1) = {x|x ¢ X, fl(x) = 0}), expressions for M

and M may be derived, since it is clear from the definition of P that in

o

o




LN

20 S S S A b Al AT

Theorem 3.3 we may take M = yw-l, where
v = inf |f1(x) + fz(x)l

s.t fl(x) + fz(x)io, Xe X,

w = sup lfz(x)l
s.t. Xe X,
and M = aﬁ'l, where
@ = sup Ifl(x) + fZ(x)l
S.t. Xe X,
B = inf [{,(x)]

s.t. fz(x) #0, xXe X.

Sharper results can, of course, be obtained by considering appropriate sign
restrictions on fl + f2 and fz, and, on the other hand, cruder estimates of
M and M can be obtained by using estimates for Y,w,a, or B derived from
relaxed versions of the corresponding optimization problems. (For example,
if X is comprised of the vertices of a cube, X may be replaced in the de-
fining optimization problem by the cube itself.)

Even if the finiteness hypothesis of Theorem 3, 3 does not hold, the
relation E = E(e) will hold for |e| in the ranges described above, provided
that vy, w, @, and P are positive and finite.

Corollary 3.4: 1If y and w are positive and finite, then E = E(e) provided

that |e| ¢ (0,yw-l). If o and B are positive and finite, then E = E(g)

provided that |e| > aﬁ-l .

Proof: It is easily verified that if ¢ satisfies the conditions of the Corollary,

then ¢ | P. a

]
o albBie o i
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Positivity of y and P can be guaranteed by assuming that f1 and

f2 are integer-valued over X , but it is also sufficient in this regard to 4_

assume that the fi are finite sums of the form Z rjhj(x) where the rJ. are
rational and the hj are integer-valued over X . If, in addition, certain
boundedness properties are assumed for the fi’ it will follow that E = E(e)

for |e| positive and sufficiently small, In particular, it suffices

to have f2 bounded both from above and below on X , or each fi bounded 1

either from above or below on X . 1In the former case we have:

Corollary 3.5: If y >0 and if f2 is bounded both from above and

below on X, then E = E(e) for all & such that |e| e (O, yw-l),

To deal with the case of one-sided bounds on the fi’ we will consider
only the case in which both fi are bounded from below, since the other cases
can be handled by replacing the constraint fi(x) =0 by -fi(x) = 0 as needed.
Theorem 3.6: If y>0 and if there exist non-negative constants £  and

1

22 such that, for i =1 and 2, fi(x) > -li for all xe X, then E = E(¢)

for all sufficiently small € >0 .

Proof: Define

€
n

sup fZ(x)
s.t. fl(x)<0, fl(x)+f2(x)<0, Xe X
and note that the constraint fl(x) + fz(x) < 0 implies fz(x) < ﬂl , so that

w, < ll s It will be shown that it suffices to choose & > 0 such that

max {e w5 € ¢ 2} <y . (Note that w, < ¢, implies that ¢ may be chosen

1

so that ¢ - max{ll,lz} < y.) Suppose that & is so chosen and that & ¢ P.

Let x¢ X' be chosen so that




T

N e L s

£(X) + £,(X)/(-£,(%)) = €

and thus

(3.1) fl(;c) + fz(i) = -e f,(k).

If f2(§)> 0, then fl()'c) <o, fl()_c) + fz(i) <0, and the absolute value of the
RHS of (3.1) lies in the interval (0, ewz] , Whereas the absolute value of the
LHS is at least y, which leads to a contradiction since g @, <y If

fz(i) < 0 , we obtain a contradiction since ¢ L, <v. .

Corollary 3.7: I, for 11,2, gi(x) is non-negative and integer-valued

for all xe X, and r1 and r2 are non-negative intzgers satisfying 0 grz <
rl , then
G={x|xe X, gl(x) =1, gz(x) = rz} =

2
r. +rr_+r +2r

-1 1 152 1 2
{xlxe X, gl(x) +[1+ (rl +1) 7) gz(x) - Yi 9
If, in addition, 0 < r, < £ then
R r2 + rlr, + r,
G={x|xe X, g(x)+ (1 +r ) g (x) = = } .
1 1 2 r1

Proof: For the first conclusion, apply Theorem 3.6 with fi(x) = gi(x) =T

noting that y > 1. For the second conciusion note that integrality implies

w, <r.=]. [

Note that by Corollary 3.7, when 0 < r2 < r1 the set

{x]| xe X, gl(x) =Ty gz(x) = rz}
coincides with the set
@&
{x|xe X , rlgl(x) + (r1+l)gz(x) =t & (rl+l)r2} :
Thus, an integer combination of the two constraints into a single equi-

valent constraint can be obtained by weighting the first constraint by r1 and

-10-




the second by rl+l. (By making use of number theoretic properties, sharper
results can be obtained in some cases. These results will be developed in
the next section.)

For the next result of this section, we consider the special case of
linear constraints. This result yields some insight into the stability proper-
ties of integer programs. On the one hand, the existence of equivalent con-
straint combinations implies a degree of stability, but on the other hand, the
limit of these combinations (involving the sum of the equations) will generally

have a larger feasible set, which implies a degree of instability.

Corollary 3.8: Let E = {x|Dx = e, xe X }, where X is a finite subset

of IRrl and let s denote the vector obtained by summing the rows of D,
and o denote the sum of the elements of e. Then there exist s and T
(which may be chosen arbitrarily close to s and ¢ respectively) such that

E* = {xi's\ X=0, Xe X }. 1f, in addition, X C Qn, then, in addition to the

other criteria, one may also require that s € Qn, T e Q1
Proof: The results are an immediate consequence of Theorem 2.1 and Theorem
S5 L]

It is easily seen that inequality constraints over finite sets can be
collapsed after converting them into equations by adding slacks in the usual
way, since the slacks will also have values in a finite set. Note, however,
that a straightforward conversion of the resulting single equation (containing
slack variables) into an equivalent single inequality in the original variables
is, in general, not possible since,regardless ofthe valuesof ¢, the set

{x]fl(x) <0, fz(x)_<_0, %o X)

w]ll=
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will in general be a proper subset of
i {x[f(x) + (+e) f,(x) < 0, xe X}

even when X 1is finite.

By mimicing an approach used by Bradley [l] for integer-valued func-
X tions, Theorem 3.3 can be used to establish a result similar to a Lagrange-

multiplier theorem. H

(N

Corollary 3.9: Let fi (i=0,...,m) be real-valued functions defined on a
set X with the property that, for each i , there exists a finite set Yi such

that xe¢ X implies fi(x) € Yi; then there exist multipliers X\

S hm (each of

I
which may be chosen arbitrarily close to 1) such that the problem
. min fo(x)

S et o (o) R =S OIS =SSR m))
: i
k" Xe X

is equivalent to the problem

m
min fo(x) + é:l )‘i fi(x)

m
s.t. f,(x) + i_Zl SEACI A
: Xe X
Proof: The problem
min fo(x)
St fi(x) =0 (i=l,...,m)
Xe X

{ is equivalent to




e g

T R
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min z
X,2z

¢« b = = 0
S, t z + fo(x)
fi(x) = 0 (i=1,...,m)
Xe X, Z¢ Yo
By using Theorem 3, 3, the constraints of the latter problem may be combined to
yield the equivalent problem:

min 2z
X,2

m
s.t-z+f(x) +iz,l MNE(X) =0 (i=1,...,m)
Xe X,2 ¢ YO .
The conclusion of the Corollary is then obtained by using the substitution

m
z = £(x) + izlxi £(x) . "

4. A Number Theoretic Approach for Integer-Valued Functions.

Previously published results in constraint combination (e.g. [l], [2],
(4], [9], [12])) have generally been based on the use of number theoretic prop-
erties. In this section we will indicate how number theoretic properties may be
used in conjunction with the approach of the previous section to obtain some

new results for the case in which fl and f2 are integer-valued.

Rather than dealing as in the preceding section with perturbations in-
volving a single (possibly non-integer) weight (l+g), constraint combination
with two integer weights will be considered. Thus, we define

E'(r,s) = {x|r - fl(x) +s- fZ(X) =0, x¢ X},
and seek sufficient conditions for E = E'(r,s), where, as in Section 3,

E = {x| fI(x) = 0, fz(x) =0, xe X}.

— ' N— “.I._-_'M




Our first result is the analog of Lemma 3.1 for this case and involves a
translate P' of the prohibited set defined by P' = {v| v = -fl(x)/fz(x) for
some xe¢ X'}, where X' = {x|xe X, f,(x)# 0}.
Lemma 4.1: If r# 0, then

E = E'(r,s) if and only if s/r§ P' .

Proof: Analogous to proof of Lemma 3.1. L] '

Proceeding along the lines of Section 3, we wish to develop sufficient
conditions for integer pairs (r,s) with r # 0 to have ratios s/r not in P'.
(It is possible to develop an analogous set of results under the hypothesis s # 0,
but to avoid cluttering the development we shall consider only the case in which
r # 0. Note also that if X is infinite, then P' may contain all rationals and
an equivalent rational combination of constraints may not exist.) For the re-

mainder of this section we assume that fl and fz are integer-valued on X .

(Note, however, that the domain X need not consist of integer vectors.) The
following Lemma establishes a key property of elements of P'. (Recall that

two integers a,B are relatively prime if their greatest common divisor (gcd(a, B))
is 1 , and note that, under the assumption that the fi are integer-valued, each
element v of P' may be represented in the form s/r, where r and s are
relatively prime integers.)

Lemma 4.2: If r and s are relatively prime integers and s/re P', then

there exists an integer k # 0 and an xe X' such that fl(;() = k*s and fz(;c) =
-k-r.
Proof: Since s/re P', there exists an xe¢ X' such that -fl(i)/fz(i) = s/r,

and thus there exists a constant k # 0 such that fl(;() =k.s and fz()'c)-:...k. r.

-14-




(Note that if s = 0, thenr =1, and the conclusion is immediate.) Since r

and s are relatively prime and fl(;() and fz(fc) are integer, lkl is the

"generalized greatest common divisor'' of fl(;() and fz(;c), and is thus

integer (see [ll]). Alternatively, one could note that -r - fl(i) =8s. fz()-(), and

obtain the result by appropriately grouping the prime factors on both sides., =
Proceeding along‘the lines of the previous section, we develop a result

based on identifying values not in P',

Theorem 4.3: Let r and s be relatively prime integers such that one of the

following sets of conditions is satisfied:

(a) fz(x) € [-lz,uz] forall xe % [r] > i max{lz,uz} for an integer
m >1; and, (in the case m >2) for |j| =1,...,m-1, xe X and
fl()-c) = -j - s imply fz()-() £j-r;

(b) for i =1,2 and for all x ¢ X, there exist non-negative integers li
such that f(x) > -, ;r >£2/m and s>f1/ m for an integer m > I;
and (in the case m >2) for |j| =1,...,m-1, xe X and fl(;() ==j.8
imply fz(;() £ Jor

then E = E'(r,s).

Proof: Assume that E # E'(r,s). The hypotheses imply r # 0, so by Lemmas

4.1 and 4. 2, there exists an X e X' and an integer k # 0 such that fl()'() =

k- s and fz(;c) = -k - r. Because of the bounds on r and s, |k| <(m-l),

but this con.radicts the assumed relationship between f and fZ on X. ]

1

Example 4.1 (Bradley [1]): Consider the following system of constraints

'/ % b
[XI] x, + 3, + 2%, %y -15 =0
4 2
[x1]+3x2x3 -9 =0

xl,xz,x330: X x3 integer.

2’

y

- ; e - : , _ ‘ ‘




T

LN

It was shown by Bradley that the weights r =11, s = 16 satisfy a set of

his sufficient conditions for valid constraint combination, namely they are

relatively prime and have the properties that r > max{O,Sl} where

SIE s;ép fz(x)

s.t. sgn(s) fl(x)s -ls], xe X
and -r < min {O’IZ} » where

I2 = 12f fz(x)

s.t. sgn(s) fl(x) > |s|, Xe X.
Note that if, as in this case, fl and f2 are bounded from below, and r and s
are positive integers satisfying the above set of conditions of [l], then, for an
appropriately chosen value of m , the conditions of (b) of Theorem 4. 3 will
hold. (For the weights r = 1l, s =16, for example, it suffices to take m = 1.)
However, Theorem 4.3 with m = 2 may be applied to this example to yield the
valid weights r = 9, s = 14, since the set of conditions fl(;c) = 14, fz(i) = =9,
Xe X is impossible,(fz(i) = -9 implies that fl()-c) = 3m - 15, where m is
integer) and fl(i) = -14 and xe¢ X imply [il] =1, x

=1, x, = 0, for which

2 3

x it is the case that fz(;c) < 6. The weights r =9, s =14 do not satisfy
Bradley's sufficient conditions, since it is easily seen that s = i4 implies

S1 = +o (the inequality constraint in the definition of S, does not bound xl). .

1
Several observations regarding Theorem 4. 3 are in order at this point.
First note that the part of hypotheses (a) and (b) dealing with the relationship

between fl and fz is also a necessary condition for E = E'(r,s); for, if r

and s are not both 0 and there exists a j # 0 such that fl(i) = -j * s and

=16~
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fz(fc) =j+«r, then E # E'(r,s) .

For non-negative f1 » hypothesis (b) of Theorem 4. 3 will be satisfied

for r = s =1, so that in this case the sum of the constraints is equivalent to
the original constraints (see (3], [7], [9] for previous results and applications
involving non-negative functions. )

Except for such special cases, however, the computational effort re-
quired to check hypotheses (a) or (b) depends in part on r,s and m. In particular,
if rand s are small in absolute value and m is large, the hypotheses are
unlikely to be satisfied, and would be difficult to check unless conditions
similar to Bradley's could be easily verified.

For m =1, however, the required relationship between fl and f2 is
vacuously satisfied, and we obtain the following Corollary, which generalizes

similar results of Padberg [12] for the case in which the fi are affine:

Corollary 4.4: Let r and s be relatively prime integers such that one of the

following sets of conditions is satisfied:

(a) £,(x) ¢ [-2,,u,] forall xe X; |r| > max{2,,u, };

(b) for i =1,2, there exist non-negative integers li such that fi(x) _>_-£i
for xe X:r>l2 and s >Ill;

then E = E'(r, s).

Note that Corollary 4. 4 generalizes Corollary 3.7 and guarantees the
existence of weights yielding equivalent constraint combinations in the cases
in which (a) one of the two functions is bounded both from above and below,
or (b) eachofthe two functions is bounded either from above or below.

The next result corresponds to m = 2 and involves a condition that is

generally easily checked. It also provides a generalization of the following
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m
result of Mathews [9] for affine functions: Let fl(x) = 2 @ X, - Pl , where
i=1
m
the o, and £, are positive integers and let f_(x) = \ B. x. - £_, where the
i 1 2 gt 2

Bi and 12 are positive integers. If r and s arerelatively prime integers

satisfying rzlz and s 3_11, then {x[fl(x) =0, fzix) =0, x>0 and integer}=
{x|r - fl(x) +s - fz(x) =0, x >0 and integer}.

Corollary 4,5:

Let r and s be relatively prime positive integers and, for
i=1,2, let fi(x) = gi(x) - li , where gi is non-negative and integer-valued
on X and li is a non-negative integer. If r 312, 8 > 21, and gl(x) =10 4f
and only if gz(x) =0, then E =E¥r,s).

A number of other corollaries corresponding to the case m = 2 may be

easily derived. For example, the last statement in Corollary 4.5 could be re-

placed by the statement "If r > lz, s > 21/2, and fl(x) = -s implies fz(x) 1
then E = E'(r,s)." It should be kept in mind, however, that Corollaries 4. 4
and 4.5 may be thought of as existence theorems applicable to fairly general
classes of functions, whereas the more general Thecrem 4. 3 identifies smaller

multipliers for functions obeying certain additional restrictions. (Even if the

conditions of Theorem 4. 3 hold when m = 2 or 3, the multipliers may tend to

grow rapidly, and may reach unmanagable sizes for large systems of con-

straints. It should also be kept in mind that, from a computational viewpoint,

it is not necessarily advantageous to replace a system of constraints by a

single constraint.) The following example show that, especially for constraints

obtained from inequalities by adding slacks, valid constraint combination for

multipliers uniformly smaller than those of Corollary 4. 4 may not be possible

i — PR—




Example 4.2 :

-
2x1+ 3x2+x3 —

x2+ 4 x + x. %, = ¥
1 2 4 5 ~

X = {x]xi > 0 and integer, i =1,...,5}.
Let r,s be integers in [1,7], and note that by taking X = (0,0,7-s,7,r)T,

X = - X = = 2 -
we obtain fl(x) s, fz(x) r, where fl(x) 2x1+.x2+x3 7 and

2
fz(x) =%

e Pl b, b - 7. Thus, s/re P', and Lemma 4.1 yields the in-

4 5
equality E # E'(r,s). [ ]

If no sign restrictions are assumed on the coefficients in the affine case,

then examples are easily constructed in the case X = {x|x >0, x integer} for
which P' consists of all the rationals, so that no valid combination of the
constraints exists. However, on a more positive note, our next theorem
shows that, even if bounds on the functions are not available, it is possible to
construct valid constraint combinations if tre fi are ''comparable'' in an
appropriate sense. (This theorem can also be considered as a generalization
of the follow.ng result of Glover [4] (which, in turn, sharpens a theorem of

n
Mathews [9]): Let fl(x) = Z aj xj - Ll’ where the aj and ll are positive
j=l

n
integers, and let fz(x) = Z pj xj - 22 , Where pj and 12 are positive
j=1
integers. If X = {x|x >0 and integer}, then E =E'(l,s) if, forj=1,...,n,
s >(12-1)¢>,j /‘31 -1, and s> £, - (£,4) aj/ﬂj &

where g, is integer-

Theorem 4,6: For i =1,2, let fi(x) = gi(x) - ti, §

valued on X and li is integer, If there exist non-decreasing functions w and

y such that xe¢ X implies fl(x) ﬁw[gz(x)] and y[gz(x)] sfl(x), then

=19
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E = E'(1,s) forany integer s > 0 satisfying s >w(12-l) and s > -y(lz+l).

Proof: Assume the result is false, so that there exists an x e X and an inte-
ger k # 0 such that fl(;t) = ks and fz(;c) = -k, If k>1, then s _<_f1()-<) and
gz(i) < lz-l. Since w is non-decreasing, the latter inequality implies

w[gz(i)] < w(t,-1). However, this is impossible since s < fl(i) < w[gz(i)] and

.__\_,,,.,_.A

w(f,-1) <s. On the other hand, if k < -1, then f(x) <-s and £+l <g,(X).
Since y is non-decreasing, y(12+1) fy[gz()_()]. However, this leads to a
contradiction since -s <y(22+1) and y[gz(fc)] £ fl(i) < -s. .

Example 4. 3: Consider the constraints:

X =%, + [sgn(xl-xz)]x1 -2 =0

xe X = {x|x >0 and integer},
where sgn(y) =+1 if y >0, and sgn(y) = -1 if y<0. These constraints

have the unique solution xl = x2 = 2. Note that the hypotheses of Theorem 4. 6

are satisfied by taking fl(x) = gl(x) = xl-xz, gz(x) = gl(x) + [sgn(gl(x))]xl-l, {

lz =1, w(y) = max{0,y} and vy(y) = min{O,y}. Thus, the equality constraints

may be combined with weights r =1 and s=1 > max{w(0), -y(2)} =0 to yield tne
equivalent (over X) constraint 2(x1-x2) + [sgn(xl-xz)]xl =W L

In the case that g1 and g_ are l_ir_lear and satisfy certain sign condi-

2 s

tions, Theorem 4.6 can be applied to yield the following generalization of

Glover's result:

n
Corollary 4.7: Let fl(x) B E aj xj -ll , Wwhere the aj are non-
j=1

n
negative integers, and let fz(x) = -El B -1
]:

positive integers. If X C {x|x >0 and integer} and $ >0 is an integer such

. are
jxj 5 where the [3]

-20-
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that s >w - (12-1)-21 ( where w= max{aj/ﬁj}) and s > -y .(L,+l) (where

Y = min{e./B.}), then E =E'(l,s).
i n n
Proof: Note that if we define gl(x) = Z ozj xj and gz(x)EZ ﬁjxj, then for
i=1 j=1
gfl(x) < w- gZ(x)-ll.

Xxe X y- 9,(X) £9,(x) W . g,(x), so that - g,(x) - £

2 1
Thus, by defining y(y) = § . y-ll and w(y) =w - y-ll, all of the hypotheses of

Theorem 4.6 are satisfied. a

More generally, if g, is non-negative on X, then the relation Y[g,(x)] <

fl(x) is trivially satisfied by letting ¥y(y) = -£.,, and we obtain the following

1

from Theorem 4.6:

Corollary 4.8: For i=1,2, let fi(x) = gi(x) - Ili, where 9, is integer-
valued on X and 1_1 is integer. If 9, is non-negative on X and if there
exists a non-decreasing function w such that xe¢ X and gz(x) <4 2-l imply

fl(x) 5_w[gz(x)], then E = E'(l,s) foranyinteger s >0 satisfying s>¢ , s >

1
w(Z 2-1).

Proof: Note from the proof of Theorem 4.6 that the inequality fl(x) < w[gz(x)]
is required only in the case gz(x) <t 2-1. With this observation the Corollary
results from taking y(y) = -ll, (]

Example4.4: Consider the following system of constraints (obtained from Bradley's

example by changing one term and interchanging the order of the resulting equa-

tions):
4 2
- = 0
[xl] + 3x, x, 9
5 2.2
- = 0,
[XI] +o3x, 4 2x2x3 15

It may be verified that, in applying Thcorem 4.8 to this example, it is possible

to use w(y) = y-9, so that a valid set of multipliers is r =1, s = 10,

-21-
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It might be noted that the proof of Theorem 4.6 also goes through if w and

y are assumed to be increasing and the conditions on s are replaced by the set of
conditions s >0, s > w(lz), and s > -y(lz). These conditions have the interesting
property that if either of w(lz) or -y(lz) is negative, then it is possible to conclude

that E is empty. For, if R¢ E, then g,(x) = £, and fl(;) -0 sothat 0 = fl{;)f

2
w(lz) and y(!z) £ fl(x) =@

In the linear case, an extension of Corollary 4.7 can be obtained for the
case in which both sets of coefficients aj and pj are merely assumed to be non-
negative. Note that if for some k, @ = Bk = 0 , then the variable xk is unrestricted
both before and after any constraint combination, and thus has no effect on the rela-

tion between E and E'(r,s).

Corollary 4.9: Let fl(x) and fZ(x) be defined as in Corollary 4.7, let aj and pj

be non-negative integers, and let J be the set of j satisfying aj + ﬁj >0. If

X C {x|x>0 andinteger} and s >0 is an integer such that sS>w- (l1 + lz-l) - ll

(where 'v\v = ma
je i ) fe %
then E = E'(l + s,s).
Proof: The constraints fl(x) =0 and fz(x) = 0 are equivalent to the constraints
fl(x)zo and fl(x)+fz(x) = 0. The result then follows from the application of Corollary
4.7 to the latter system, ignoring any 0 columns for the reasons cited above. =
For the final result of this section, note that if there exist Yy and Y,
such that ylaj + yzpj >0 for all j, then the original system can be transformed
into an equivalent system in which all coefficients are positive, so that Corollary
4.7 may be applied. Moreover, the existence and values of suitable Yy and Y,

may be determined via linear programming by solving the system of inequalities

_22-

{a;/ta;+8))}) and s> Y -Q(zl + 1, + 1) (where Y = min {a/la; +B))).

|
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Y19 + yzﬁj 2y =1 .. ,n)(;clo avoid trivial cases, asnsume af+ sz > 0).
. = )
Theorem 4.10: Let fl(x) = ), ajxj -4 and fz(x)

1]

o I, a0

. ) e pjxj lz. It X C
i=l j=t
{x|x >0 and integer} and there exist Y, and 7 such that vy, + yzﬁj =1
for all j , then there exist r and s such that E = E'(r,s).

Of course, the existence of yl and y‘2 satisfying ylarj + yzﬁj >0 for
all j implies finiteness of E. In the next section it will be shown that if
X = {x|x >0 and integer}, then finiteness of E is also a necessary condition

for the existence of r and s such that E = E'(r,s), providing a partial converse

to Theorem 3. 3.

5. Tiniteness as a Necessary Condition.

Sufficient conditions (including finiteness of the set X) for equivalent
formulations of various types were established in the preceding sections. In this
section we will show that for linear equations over Zi = {xixe IR:. X integer},
finiteness of the feasible set is a necessary condition (except in certain trivial
cases) for the existence of equivalent constraint combinations.

The result will first be obtained in the case of two equations and then
generalized to systems of m equations. The following Lemma, which may be
thought of as a ''non-standard' theorem of the alternative is needed for the two
equation case (geometrically, the alternatives correspond to the cases in which the
set {z|z = Ax for some x >0} is and is not a "'pointed" cone):

Lemma 5.1: Let A be a 2xn matrix with linearly independent rows and no 0
columns. Then exactly one of the following alternatives must hold:

(i) there exists a vector y such that yTl\ >0y

- 2
(ii) for each be IR”, there exists an x > 0 such that either Ax =b or Ax = -b.




Proof: Both (i) and (ii) cannot hold simultaneously, for let b be chosen so that
b#0 and by =0. Then if x >0 is such that Ax =b or Ax = -b, then 0 <(yTA)x
yT(Ax) = 0, a contradiction. Suppose that (ii) does not hold, and let b be chosen
so that neither the system Ax = b, x >0 nor the system Ax = -b, x >0 is solvable.
By the Farkas Lemma, there exists vectors u and v such that ula >0, uTh <0
and vTA >0, va > 0. We will show that (u+v)TA > 0. First note that since the
rank of A is 2, A contains 2 linearly independent columns, so that uTA #0
and vTA # 0. Thus, u#p- v forany p<0. Moreover, uTb <0 and va R0
imply u#p- v forany p>0. Thus, if q is @ column of A such that uTq =r0i;
then qu > 0. (Here we take advantage of a property of IR2 - this result does not
extend to the case in which A has rank 2 and is mXn for m > 2). The result
follows by taking y = (u + v). L
Theorem 5.2. Let E = {x|Ax - £=0, xe¢ X}, where A isa 2xn integer matrix
with linearly independent rows and no 0 column, £ is an integer vector, and
X = {x|x >0, x integer}. If E# ¢ , then the following are equivalent:
(a) there exist integers r,s such that E = E'(r,s);
(b) there exists a vector y such that yTA >0
(¢} E s finite.
Proof: The relation (b) => (a) follows from Theorem 4.10.

To prove that (a) => (b), let b = (-s,r)T and note that since A # 0,
E+#R and thus r and s cannot both be 0, so b# 0. We will now show
that neither of the systems Ax = b, x >0 and Ax = -b, x >0 has a solution.

For, if Ax = b, x >0 had a solution, it would have a (rational) basic feasible

s28e

e it




; % %*
solution x , so for an appropriate positive integer k , kx would be integer and

Ax* = kb. Letting x'e¢ E then, A(x'+ x*) =kb + £, where £ = (Il,lz)T, so that

(x' + x*) is in E'(r,s) but not in E . A similar argument applies if Ax = -b, x >0

is assumed solvable. The conclusion (a) => (b) then follows from Lemma 5.1.

Clearly (b) => (c), so we need only show that (c) => (b). If (b) did not
hold, then by Gordan's theorem, there would exist a non-zero solution of the system

Ax = 0, x >0, and hence a rational solution, which in turn can be used to contra-

dict the finiteness of E . [

-8 It should be noted that if the matrix A does not have linearly independent
rows, then there also exist weights such that E = E'(r,s). This is easily seen by
considering separately the cases (1) rank A = 0, (letr =£1, Sh= L’Zi (2) rank A =1,
E =9 (choose r and s such that (r,s) A=0 and (r,s)f# 0), and (3) rank A =1,

E+ ¢ (choose r and s such that (r,s)A # 0). Moreover, the hypothesis that A

contains no 0 columns merely rules out trivial cases in which variables do

3 not appear in the equations. The presence of such columns has no effect on the
validity of constraint combinations, so that from a computational viewpoint one
need only consider the non-zero columns.

In extending Theorem 5. 2 to systems of equations, the following direct
consequence of the theorem is useful.

Corollary 5.3: Let the hypotheses of Theorem 5.2 hold, and assume in addition

that E is infinite; then, for every pair r,s of integers, E is a proper subset of
E'(r,s).

* % * %
Corollary 5.4: Let E = {xlA x -4 =0, xe X}, where A 1is an mX n integer

*

matrix with rank at least 2 and no 0 columns, £ is an integer vector, and
%

X = {x|x >0, xinteger}. If E # ¢, then the following are equivalent:

s D=
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(a) there exists an integer vector g such that

E - {xquA*x - qTIZ* =0, xe X} ;

(b) there exists a vector y such that yTA* >0

(c) E i finite.

Proof: The equivalence of (b) and (c) follow by arguments analogous to those of
the proof of Theorem 5. 2, as does (b) => (a), so we need only show that (a) =>(c).
Suppose that (a) holds, but that (c) is false. Without loss of generality, let us

* : %«
assume that the rows of A have been ordered so that the first two rows of A

* ) *
are linearly independent and let A be the matrix consistingof a1 = a1 , the first row of A

m

* * t *
and a2 = E qi ai , where ai is the ih row of A . Similarly, let £ be the

i=2
%
2-vector whose first component is the first component of ¢ and whose second

m
* *

component is Z qi fi. Note that (a) implies E = E'(ql,l) = E (here the nota-

1=z

E 3
tion of Theorem 5. 2 is being used). Since E is infinite, we can cbtain a contra-
diction via Corollary 5.3 if A has rank 2 and no 0 columns. Note that A can
£ 3
have no 0 columns, for, if column j of A were 0 and x'e E , then for any
positive integer k , the vector x' + k - ej, where j is the jth unit vector, would
: ; * .th * L
be in E but not in E (since the j column of A is non-zero), contradicting
&

E=E . Ifthe rows of A were linearly dependent, then since EY = ¢, it would be the

%

* *
case that E = {xlalx - ll =0, xe¢ X}. However, by Corollary 5.3 with r =1 and

%*

* *
| =0, ax-0,=0,

*
s = 0, the set on the RHS properly contains the set {xlalx -t > >
&
x ¢ X}, which, in turn, contains E , vielding a contradiction, ®
If X< Z: and there exists a y such that y A >0, then by Theorem 4.10
there exist weights such that E = E'(r,s). If sucha y does not exist, then the cone

K={z|z = Ax,x >0} consists either of the origin (if A = 0), a line (if A has rank 1),

a half-space, or all of R (Note that the latter case will hold if and only if neither

. - 4 y




the system yA >0 nor the system yA <0 has a non-zero solution.) The

. n
following theorem gives sufficient conditions for E = E'(r,s) in the case K =1k :

Theorem 5.6: Let E = and X = Z!,l . 1f {zlAn =2, 220} = [R'rl and there exists

¥

an integer vector y = ()—/l.}.lz) with y, and ;Z relatively prime such that the

1

system Ax =y has a solution in Z? then E = E'({/&. —91).
Proof: Suppose that E'(}-'Z,-)-'l) # ¢, so that there exists an X ¢ Zzl such that
Ax-f = ky for some non-zero integer k . Let X' Zi satisfy Ax' = y, and choose
an integer p >0 such that Ax = (-p)y has a solution x'' in Z: If k >0, choose
an integer q such that q - p >k, and obtain a contradiction from the relations

Ax +(q-p-k)x' +gx") =€ =ky+(qg-p-KkKly-(q-py=0.

If k <0, a contradiction is similarly obtained by noting that A(x + kx') -/ =0 . =

Corollary 5.7; 1f E=¢, {z]lAx=2, x>0} = R”, and A contains a column with

relatively prime elements aj, ﬁj, then E = E'(pj. -uJ)

Given a method for determining feasibility or infeasibility in the single
constraint (knapsack) case, one may use an extension of Theorem 5.6 to determine
whether or not E = ¢. Once all hypotheses (other than E = ¢) of Theorem 5.6 have
been verified, then the determination that E'(QZ,-)-/I) = ¢ implies E = ¢ (since

E gE’({:z,-Ql)), and the determination that F'(§'2--§1) # ¢ implies that E is infinite.

5. Summary.

We have shown how, under various discreteness hypotheses equivalent
yet '""'simpler' formulations may be obtained for systems of constraints. These
results generalize and extend related constraint transformation results of Gould
and Rubin, Hammer and Rudeanu, Bradley, Glover, and others, and also vield

some interesting insights into stability (an instability) properties of integer programs.

w2«
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